
 1

Guide to the Data Acquisition Engine

Fermilab
Beams Division

Accelerator Controls Department

Kevin Cahill, Charlie King

created
April 17, 2001

Version 1.0.3
May 21, 2002

 2

Architecture

Client Server Model
Clients are end-user applications existing here at Fermilab, in a home, or at any
workstation connected to the Internet. Servers are control system applications and nodes
that serve clients and are privileged to speak the proprietary ACNET protocol and utilize
resources of the control system for itself and on behalf of authorized clients. A server is
referred to as Data Acquisition Engine, DAE, or engine. The connection between the
client and engine is RMI, Remote Method Invocation, a portable networking protocol
between Java applications. Consequently, many client applications are written in Java.
Non-Java clients are also supported by engines using the ACNET or XML-RPC
protocols. XML-RPC servers are engine clients submitting data acquisition jobs on
behalf of clients written in any language that supports XML-RPC.

Server nodes reside on high-bandwidth networks, emit and listen to multicast networking
messages, work with raw byte-ordered data, and work together to consolidate traffic and
functions across the control system.

Client nodes may be located across firewall routers, may exist on networks where
multicasting is blocked, will normally work with scaled data, and rely on a server
connection to the control system to acquire accelerator data.

Development
Development tools are unrestricted, but an integrated development environment, IDE,
improves productivity. Most development occurs on Windows platforms, and the
integrated development environments JBuilder, VisualCafe, and Forte for Java have all
been used to develop client and server code. JBuilder is the currently recommended
choice for an IDE.

Security
User authorization is required. A frequent user may persistently register a node the user
solely controls. Other users will be required to login as each first connection from their
node to a server is made. The login will employ kerberos. Each user, application, and
node in the system may be assigned a set of permissions. Permission to set a device
requires the binary AND of all permissions to result in TRUE.

Accountability
Connections, jobs, bandwidth, device setting and control, and other client characteristics
will be logged for understanding and as a necessary security element.

Callbacks
Asynchronous callbacks are the rule, and polling is generally not employed.

 3

Thin clients
An important consideration for building reusable controls’ components is to provide for
execution of the controls logic on the server when possible. The VAX/VMS control
system promoted fat clients in that server applications simply acquired data, and user
applications contained the controls’ logic. A data logger’s logic for logging and
retrieving data is more reusable when developed as server logic instead of client logic.

Data acquisition job

Overview
This accelerator control system exists primarily to display and control accelerator
components and systems. The data acquisition job is used to acquire and set data. The
job defines the ‘from’, ‘to’, ‘what’, ‘when’, ‘who’, and ‘how’ objects of data acquisition.

Job components

Source
The source component of the job determines where the data comes from.
AcceleratorSource, SavedDataSource, and DataLoggerSource are examples of .
DataSource, the abstract class all data sources data extend.

Disposition
The disposition component of the job determines where the data is delivered to.
AcceleratorDisposition, SavedDataDisposition, and DataLoggerDisposition are examples
of DataSource, the abstract class all data dispositions extend. The job components for
source and disposition extend the same object since source and disposition are often
interchangeable.

Item
The item component of the job determines what data is collected from the source and
delivered to the disposition. AcceleratorDevicesItem, ColliderShotItem, and
ParameterPageItem are examples of DataItem, the abstract class all data items extend.

Event
The event component of the job determines when or how often data is collected or
returned. OnceImmediateEvent, DeltaTimeEvent, and ClockEvent are examples of
DataEvent, the abstract class all data event extend.

User
The user component of the job specifies who owns the job and its connection to the
server. The security and accountability issues are encompassed by the DaqUser job
component.

 4

Control
The control component of the job determines how the job recovers from lost connections,
and DaqJobControl is a job control object. DaqJobControl also provides for callback to
the interfaces DaqJobCompletion, DaqJobTroubles, and DaqJobStatistics.

Code Example, one-shot read
import gov.fnal.controls.daq.acquire.*;
import gov.fnal.controls.daq.datasource.*;
import gov.fnal.controls.daq.items.*;
import gov.fnal.controls.daq.events.*;

(within some class)

DaqUser user = new DaqUser (“ReadingTry”, “DSE03.fnal.gov”) ;
int property = AcceleratorObject.READING;
AcceleratorDevice device = new AcceleratorDevice(“M:OUTTMP”, property,
0,0);

DataSource from = new AcceleratorSource();
DataSource to = new DaqEngineTerminalOutputDisposition(“Testing”,
true);
AcceleratorDevicesItem item = new AcceleratorDevicesItem();
item.addDevice(device);
DataEvent event = new OnceImmediateEvent();
DaqJobControl control = new DaqJobControl();

DaqJob job = new DaqJob(from, to, item, event, user,control);

try
{

job.start();
}
catch (Exception e)
{

System.out.println(“whoops, job.start caught: “ + e);
}

Explanation
The first 4 lines import packages supporting data acquisition that are needed for the code
that follows.

The next line establishes a connection with a server engine, in this case the default engine
since it is not specified. The user may be prompted to log in so the engine can determine
the privileges of this user. Most applications need but one DaqUser connection for all the
DaqJob (s) of their application.

The next line identifies the data acquisition property of interest.

The next line defines the object describing the outdoor temperature reading.

 5

The next line specifies the data source is the accelerator, i.e. collect data from the front-
ends in real time.

The next line specifies the disposition to be the system terminal output.

The next line creates a collection frequency object specifying a collection of but once.

The next line creates a default job control object.

The next line creates the job.

The next line tries to start the job. Catching and printing the exception to the terminal
will describe the problem starting the job.

This job will stop by itself once data is returned.

RMI
As the job is started, the job components (excepting job control) are sent to a server
engine via Remote Method Invocation (RMI). RMI is a portable networking protocol
allowing the engine to communicate with clients regardless of their byte architecture.
The engine examines the job components to determine which kind of job scheduler to
start to carry out the job.

Disposition Callbacks

GenericCallback
Consider an application collecting readings where the job source is AcceleratorSource,
item is an AcceleratorDevicesItem containing an AcceleratorDevice, and event is a
DeltaTimeEvent. By definition, the job’ s disposition must implement the
GenericCallback interface (that is how the engine knows to start an
AcceleratorPoolScheduler to return readings). The class that started the job or an inner
class might have extended MonitorChangeDisposition and overloaded the reading
method. Failing to overload the reading method would result in the reading method of
MonitorChangeDisposition receiving the reading and writing a message describing the
reading to System.out. The callback signature is:

public void reading(WhatDaq device, int element, int error, Date timestamp,
CollectionContext context, double reading)

and not difficult to implement and understand. The application is not limited to receiving
all or any of the readings within the disposition’ s callback. When the item or device in
the job implements GenericCallback, the callback order of delivery preference is device,
item, and disposition.

 6

PlotCallback
An application obtaining plot data, specifies the PlotCallback implementer in the
PlotDataItem. The callback signature is:

 public void plotData(Object request, Date timestamp, CollectionContext context, int
error, int numberPoints, long[] microSecs, short[] nanoSecs, double[] values)

EventCallback
An application requesting Tevatron clock event or software state transition event
callbacks specifies the DataEventObserver in the EventDataItem. The callback signature
is:

 public void update(DataEvent request, DataEvent reply)

ReportCallback
An application obtaining report callbacks specifies the ReportCallback implementer in
the ReportItem or disposition. The callback signatures are:

 public void initialReport(String report, Date reportTime)
 public void updateReport(String report, Date reportTime)
 public void troubleReport(String report, Date reportTime)
 public void finalReport(String report, Date reportTime)

Other Callbacks
Other callbacks exist to return objects, trees, and ACNET errors. Their callbacks include
ObjectCallbackDisposition, FermiDataDispositionWithCallback, TreeCallback, and
AcnetErrorCallback. The callback signatures are designed to be easy to understand and
implement.

Database Access
The package gov.fnal.controls.db contains support for database access. Pooled and
transparent database connections are supported. When possible, job element database
access occurs on the engine to reduce the job’ s RMI overhead and to promote
performance.

ACNET errors and exceptions
AcnetError in the package acnet supports the definition, translation, caching, and report
generation of ACNET facility code, error code status returns.

AcnetException and AcnetErrorException in the package util support the creation of
exceptions that are control system specific.

Schedulers
AcceleratorPoolScheduler, DataLoggerScheduler, and SnapShotScheduler are examples
of schedulers. The scheduler is responsible for starting and completing the job on the

 7

engine. In the outdoor temperature example, an AcceleratorPoolScheduler inquires of the
AcceleratorDevicesItem what devices are to be collected, inserts those devices into the
data pools appropriate for the OnceImmediateEvent, informs the disposition how to
determine when the job is complete, notifies each of the job components that the job is
beginning, notifies each of the job components as the job ends, and returns completion
status back to the job within the client. The scheduler returns a DataSchedulerInterface
to the client’ s job, an RMI connection that allows the client to cancel the job.

Interchangeable job components
The DaqJob and its components are intended to promote reusability. Consider the
outdoor temperature collection job. Substituting a DeltaTimeEvent or ClockEvent for the
OnceImmediateEvent and the disposition to a PlotDisposition changes the role of the job
to a plotting application. Substituting a SavedDataSource for AcceleratorSource displays
a value from the past. Substituting a DataLoggerDisposition for
DaqTerminalOutputDisposition logs the value.

Client applications should not expect their job components to be fixed. Consider the
parameter page application. The parameter page application is implemented as a
disposition. The normal behavior of a parameter page application is demonstrated with a
job including AcceleratorSource, ParameterPageItem, and DefaultDataEvent. Job
component substitution of SavedDataSource for AcceleratorSource allows the
ParameterPageDisposition to be reused as a Save/Restore application.

The DaqJob is not limited to the collection of accelerator device data. The DaqJob may
also be configured to inform a client application of Tevatron clock events and software
state transitions. It is also used to return progress reports for a Save/Restore save and to
report front-end heartbeat transitions.

Data Acquisition Engine

ACNET
The ACNET protocol is a connectionless, peer-to-peer, proprietary Fermilab networking
protocol. The data acquisition, plot, and alarm message protocols are built atop ACNET
messages, and ACNET is the messaging protocol supported by the front-ends.

The ACNET implementation in Java supports multiple collections, is asynchronous,
supports timeouts on single and multiple replies, supports large message sizes, supports
offsets into a transmitted message buffer and includes support for building and parsing a
message buffer. Each engine has about 20 connected tasks supporting or using type-
coded messaging protocols built upon ACNET. Client nodes, by definition, do not
support ACNET.

 8

Clients
The Data Acquisition Engine is a server supporting clients. It is the portal for client
access to the control system. Clients are connected to engines with RMI. Java applets
and applications are clients.

Applets
Java control system applets are essentially control system applications running with
greater security restrictions concerning the RMI connection between the client and
engine. When users want access to the control system from offsite, neither the user nor
server wants to open its machine to unrestricted network access. Consequently, offsite
access will be gained from a web server with links to control system applets. The applet
is restricted to a network connection only to that web server which is connected to the
control system.

Applications
Java control system applications are run from typical batch command files, start up faster
than applets, and have fewer restrictions when run on site.

Internal threads
Functions such as data logging behave like client applications, but happen to be running
in a thread within an engine. Jobs within the engine have the option to suppress RMI
callbacks.

Bridge to front-ends
The engines serve as a bridge from the RMI to ACNET protocol and as a bridge from
client applications to front-end applications.

Front-end to front-ends
The alarms, plotting, and data acquisition protocols are not uniformly supported across all
front-end platforms. By front-ending the front-ends, the acquired consistency promotes
DaqJob component reusability. Sampling on clock event and state transition plus delay,
long periodic rates, as well as continuous and snapshot plot support are supported within
the engine for all devices by operating as a front-end to front-ends.

Front-end consolidation
The VAX/VMS control system consolidates front-end data acquisition on a node basis
across about 60 nodes. If each of those nodes supported a client application interested in
the same device, the device’ s front-end would transmit about 60 messages periodically.
Consolidation across all the engines reduces the front-end’ s responsibility to transmitting
a single reply periodically to the engine servicing that front-end, and the consolidating
engine must deal with sharing this data with other interested engines. The bandwidth
problem moves from the front-end to the engine, but the engines are generally centrally
located near high-bandwidth links and are more easily upgraded. Consolidation increases
complexity and the number of layers of message handling, but is necessary if the front-

 9

ends are ever to move from the proprietary ACNET protocol to a more processor
intensive, portable protocol such as RMI or CORBA.

Configuration
When a Data Acquisition Engine starts, it configures itself as a member of the operational
DAE cluster, the development DAE cluster, or as a stand-alone engine.

Operational Cluster
The operational engine cluster is a group of machines that are cooperatively supporting
each other, front-ends, and client nodes in delivering operational access to the control
system. Some engines are assigned front-end consolidation responsibility. Engines ping
each other and their assigned front-ends and consolidate front-end data acquisition across
the operational cluster. Engines participate in transmitting and receiving multicast pool
messages containing reading data on popular channels. Software state transitions
announce the coordination control notification, and ACNET is used as the consolidation
message carrier.

Development Cluster
The development engine cluster is a small group of machines with the same
characteristics as the operational cluster, only utilizing independent state transition
devices, multicast channels, and consolidation messaging.

Stand-alone
A stand-alone DAE is not part of a cluster. It does not participate in consolidation or
otherwise share responsibility with other engines. Stand-alone engines have a direct
connection to front-ends.

Other Data Acquisition Engines

Data Server Engines
A data server engine, DSE, is a data acquisition engine with no front-end consolidation
responsibility primarily supporting application clients. Clients consume resources on
their servers. A server starved of resources by a misbehaving client operating as a
consolidation engine for some front-end reduces access to that front-end across the
control system. The separation of the front-end centric DAE from the client centric DSE
provides for greater reliability in the system. Data server engines often will be running
on the same node as the client applications. A Main Control Room, MCR, console will
run a data server engine with client applications connected to the local DSE. The DSE
reaches a front-end thorough its consolidating DAE. The DSE may be shutdown or
restarted, and only that MCR console is affected.

Data Utility Engines
A data utility engine, DUE, is a data acquisition engine with no front-end consolidation
responsibility primarily supporting open access front-end clients, data loggers, and
servers.

 10

Data Programmer Engines
A data utility engine, DPE, is a data acquisition engine generally assigned to a
programmer for development purposes when a desktop machine is not available or
convenient.

Starting and Using an Engine

Startup command files
When a Data Acquisition Engine starts, it configures itself as a member of the operational
DAE cluster, the development DAE cluster, or as a stand-alone engine. The instructions
for starting an operational engine are found at Restarting a DAE.

Developers may start a DAE from the path dae08:gov.fnal.controls.servers.dae. Any
node with an entry in the ACNET node tables may run an engine. The batch file
RunEngine_p starts a DAE on the operational engine cluster unless the node is a
designated development cluster node. The batch file RunBug_p starts the DAE graphical
user interface, GUI, but does not initially start ACNET and other engine facilities. The
“_p” portion of the batch file implies that “p:\” is specified as the Java classpath. The
batch files ending with “dzyp” have a classpath disk order of d, z, y, and p in that order.

 11

DAEBug
The batch file RunBug_p starts the DAE graphical user interface, GUI, but does not
initially start ACNET and other engine facilities.

leads to

 12

If the “ Start” button is clicked, a stand-alone engine is started since the “ Consolidate”
button is not selected. If the “ Consolidate” , “ FePing” , and “ MultiCastPool” buttons were
selected before clicking “ Start” , then the engine will start up exactly as if started from
OperationalRunEngine.

Consolidate means to access front-end resources through the DAE responsible for the
front-end. FePing means that service pings for availability, Tevatron clock capability,
and plot capability should be performed with the front-ends within this DAE ‘s
responsibility. OneShot1 configures the OneShotDaqPool to acquire data one reading at
a time, a useful performance measuring utility.

A DaeBug is useful even without starting an engine since it is still capable of running
DaqJob (s). Any DaqJob started will try to connect to the engine listed on the button now
labeled “ local” . Clicking on local will provide a Java ACNET node selector for choosing
any Java ACNET node, and future job windows will be associated with the selected
DAE.

A user may run several DaeBug applications connected to one or more server engines.
Of course, only one instance may be running a local ACNET.

For example, choosing the node DAE01, and selecting the DAE menu item “ list users”

 13

will list the users connected to DAE01.

 14

Selecting the “ Do” menu item “ NewCreateJob”
will pop a JobEditor window connected to dae01.fnal.gov.

The job editor uses the Java reflection API to find constructors and their arguments for
source, disposition, item, and event. Some job components also provide picker functions
for the job editor. Many types of DaqJob may be executed with this editor.

The Java reflection API is also used to aid debugging. It is often useful to compile a
source module with a debugging flag turned on to report step-wise progression of data
structures to terminal output as the module performs its function. It is also useful to report
complaints or unexpected results to terminal output. However, a compiled debugging flag
affects all users of that class for the lifetime of the class load, and terminal output
complaints will eventually roll off the screen. It is more useful to be able to set the state
of a debugging flag at runtime and to have the ability at runtime to report on statistics and
complaints.

The reflection capabilities of the Java platform support the inquiry of supported methods
in classes and the ability to invoke those methods dynamically.

Most of the engine’ s classes support two static methods for setting and querying a
debugging flag. The method isClassBugs returns a boolean state of the class’ s debugging
flag. The method setClassBugs takes a boolean argument to set the debugging flag. The

 15

engine’ s graphical user interface for the local engine supports a button labeled SetBugs
that provides a file navigator to search for and add classes that support these methods to a
window that supports setting and clearing the class’ s debugging flag. Any class that
implements these two methods may use the SetBugs button to set or clear their debugging
flag. The AcnetReadThread class for example will write to the terminal output a report of
each incoming ACNET message when the class debugging flag’ s state is true. This
functionality is available only on the local engine since setting the debugging flags on
remote engines could harm their performance, and the output is not viewable by a remote
engine user.

Similarly, most of the engine’ s classes support a static method names reportStatistics that
takes no arguments and returns a string. The modules implementing reportStatistics
maintain static variables with statistics about the class, including complaints and
unexpected results. Most of these classes can return a long string with embedded carriage
control that result in a report when this string is directed to a terminal output. The classes
also typically suppress statistical counters with a value of zero. The engines support a
menu item for ReportStatistics, and reflection and a file navigator are used to access to
classes supporting reportStatistics. This functionality is available on the local engine as
well as remotely to any engine in the control system since acquiring a statistics report is
not assumed to cause any service interruption. An example of a statistics output:

 16

Likewise, reflection is used to discover implementers of a static method dumpPools with
8 boolean arguments.

 17

Most class authors would benefit by supporting these debugging features early in the
development cycle. These features will aid the author and users in debugging and
maintenance.

 18

Engine Packages
gov.fnal.controls.acnet
Supports ACNET protocol, tests, and statistics. AcnetError defines the facility/error code
status returns including translation to text, caching, and reports. AcnetMessage is useful
for packing and unpacking binary data.

gov.fnal.controls.daq.accountability
Supports the accountability features of the control system. Who did what from where
and when.

gov.fnal.controls.daq.acquire
Supports DaqJob, DaqUser and much of the RMI between the client and engine.

gov.fnal.controls.daq.bridge
Supports specific bridging functions from Java to the VAX/VMS control system. For
example, informing the sequencer on front-end state transitions.

gov.fnal.controls.daq.bugs
Supports the debugging tools utilizing the Java reflection API for classBugs,
reportStatistics, and dumpPools.

gov.fnal.controls.daq.callback
Defines the interfaces for many data acquisition callbacks associated with the
components of DaqJob.

gov.fnal.controls.daq.consolidate
Engine startup, consolidation assignment, front-end heartbeat, and persistent jobs; what
makes an engine an engine.

gov.fnal.controls.daq.context
Optional data return collection context, i.e. from which SDA or save file when source
spans multiple sources.

gov.fnal.controls.daq.datasource
The source (from) and disposition (to) components of DaqJob.

gov.fnal.controls.daq.db
Support for database device type, index, and name.

gov.fnal.controls.daq.errors
Support for the logging and display of all errors across the control system.

gov.fnal.controls.daq.items
The item (what) component of DaqJob.

gov.fnal.controls.daq.logger

 19

Support for data logger device and rate logging specification.

gov.fnal.controls.daq.mcast
Support for data acquisition multicast of popular channels.

gov.fnal.controls.daq.oac
Support for building Open Access Front-end Clients.

gov.fnal.controls.daq.pool
Data acquisition data pools, support of RETDAT protocol.

gov.fnal.controls.daq.scaling
Support for transformation of raw data to engineering units.

gov.fnal.controls.daq.schedulers
Engine realization of the DaqJob.

gov.fnal.controls.daq.security
Security authorization, control, and display.

gov.fnal.controls.daq.snap
Fast-time plot and snapshot plot protocol support.

gov.fnal.controls.daq.tools
Tools; job progress, device setting, …

gov.fnal.controls.daq.tree
Support of managed tree display of directory like information.

gov.fnal.controls.daq.util
Utilities, engine shutdown, pooled database connections, ACNET error definitions.

Contributing to Engine Packages

Reusable Job Components
The important components of a data acquisition job are source, disposition, item, and
event. The thin client architecture encourages the development of new job components
and extensions of existing components.

An ideal application consists of a single job. That job may be composed of other jobs
and any job may start additional jobs. A job component of the application may be very
application specific. For example, a parameter page application is defined by a job with a
parameter page disposition. The traditional concept of a parameter page is encompassed
in a job with a data source from the accelerator, a data item describing a page, category,
and sub-page, and a default data event item. The parameter page disposition by default
provides a graphical user interface.

 20

The parameter page disposition is reusable. Changing the data source to an accelerator
save file or the data item to a front-end node, or the data event to a group of Tevatron
clock events modifies the function, behavior, and utility of the parameter page. It also
reduces the need for custom displays, diagnostics, and duplicative applications. Overall,
it reduces system complexity.

Likewise, a parameter page item is reusable. The item may be used as input to a database
report, an alarms bypass page, or a Save/Restore save.

The plot display also exists as a disposition. Varying job components extends the plot
display functionality to encompass fast time plots, slow time plots, snapshot plots, data
logger plots, and others.

Other job components may be extended to provide a reusable job element exploited in
new jobs to provide functionality not present in the existing control system. The data
source CompareSources uses two sources of data for reporting to the disposition the data
item elements that are different in several configurable formats. This data source can be
employed to compare save files and report differences to a parameter page. It can be
employed to compare the database download records to front-end settings. It is a
reusable component that may be applied to a variety of jobs.

The Tevatron clock display, today’ s application page D33 Clockscope, might exist in
Java as a disposition. Its constructor might include the display of clock events
graphically. It might be imagined that this disposition has functionality even when its
display is suppressed. The disposition could provide an interface for the specification of
returned information about the current cycle, previous cycle, numbers and times of
observed events, etc. Changing the data source to a data logger of Tevatron clock events
or changing the data item to a subset of all Tevatron clock events are ways of extending
the functionality of this reusable job component.

Complex accelerator concepts will often be implemented as a disposition. The
disposition will often provide a graphical user interface. A typical data item suitable for a
complex accelerator concept will often be the default data item, the job’ s means of
relieving the user of the knowledge of how to ‘feed’ the disposition. In this case, some
other job element is expected to provide data acquisition specification for the job.
Likewise, the job’ s data event will often be the default data event.

Whenever possible, the job elements functions are performed within the data acquisition
engine instead of within the client. When the data source is an accelerator save file, the
save file is opened, read, and the data is scaled within an engine. When an item is a
complex computational device item, the collection and computations are performed
within the engine. Job elements within the engine have access to binary data, typically
reduce the RMI overhead, and contribute to thin clients. The disposition in the engine is
coupled with the disposition in the client with RMI calls often specific to the function of
the disposition. For a beam position monitor disposition, the engine shares results to its

 21

client counterpart through RMI. These RMI functions are likely beam position specific,
implemented only in this disposition, and providing the client access to beam position
objects, results, and control. This obviates the need to encapsulate all complex devices
within a single data acquisition model.

For job elements to maximize their reusability, they should insofar as possible be
completely described by one of their constructors. That is, they should not have to be
manipulated after construction by a knowledgeable class, as that reduces their reusability.
Job element extenders should always keep in mind that their functionality is not targeted
for a single application, and their ultimate reuse is expressed when exploited by a
sequencer application to operate the complex.

A significant tool aiding the development and testing of job components is the job editor.
The job editor’ s role is to create and run nearly any job within the control system. The
job editor provides a visual interface able to construct any job component. The reflection
capability of the Java language, coupled with guidelines to job component authors
provides the capability to instantiate job components and to build and test jobs. The job
editor also provides support for persistent job components, i.e. saving job components to
a database including the ability to save jobs.

The ultimate goal is to imagine a complex, multi-functional application that can be
described by a single job composed of jobs, and each of these jobs and their job
components were created by the job editor.

Extending Job Components
The data acquisition architecture of the Data Acquisition Engine (DAE) encourages
programmers to extend the components of the DaqJob, both for functionality and for
callback.

Source, disposition, item, and event are the key components of a data acquisition job.
They are literally subclasses of DataSource, DataSource, DataItem, and DataEvent
respectively. They are passed by value to an engine using Remote Method Invocation
(RMI). Each base class is abstract and each subclass must implement some functionality
to satisfy the data collection requirements of the engine.

A programmer extending one of these abstract job classes to provide additional data
acquisition functionality has several requirements. The programmer must implement the
abstract methods of the subclass extended. The new class must be serializable as it will
be passed by value to an engine when starting a job. The attributes of an object of this
class necessary to fulfill the method invocations on the engine must be serializable, and
the attributes not necessary to the engine should be marked transient to reduce
serialization overhead and maximize effective network bandwidth.

A more common example of extending these abstract job classes is for the purpose of
establishing callbacks. Interfaces define the data acquisition callbacks, and simply

 22

extending a subclass of DataSource or DataItem establishes the object as having
implemented data acquisition callbacks.

The interface GenericCallback requires the interface implementer to implement methods
to receive data acquisition callbacks for the generic properties of a device. A job’ s
disposition, item, and item element may implement GenericCallback to receive callbacks
in the disposition, item, or item element respectively. When extending
MonitorChangeDisposition, AcceleratorDevicesItem, or AcceleratorDevice for the
purpose of implementing GenericCallback, the serialized job argument to the engine
needs no additional information other than identifying that this class implements
GenericCallback.

When the engine receives a job argument, the Java ClassLoader loads the class from
CLASSPATH typically or from the java.rmi.server.codebase URL specified at engine
startup. Class discovery and loading are cached within the Java virtual machine and will
not be reloaded until every reference to a loaded class has expired or a new class loader is
installed.

When a loaded RMI stub class is changed by adding or deleting attributes (since the job
arguments are passed by value), the engine’ s Java virtual machine will throw a
java.rmi.MarshallException. This means a previous version of this modified class has
already been loaded into the engine, and this engine cannot process this job argument. At
this point, the engine could be restarted or the engine could delete and recreate a
ClassLoader. Creating a new ClassLoader would result in users of the previous version
(including the engine itself) receiving MarshallExceptions when they tried to use the
older class. The analogy to older control systems is passing a C structure by value,
having programs running using that C structure, modifying the C structure and trying to
run old and new users of the structure at the same time in a single server. Java is an
improvement in that it can handle an object that it has never seen, that was created after
the virtual machine was run, but without extraordinary steps will not handle multiple
definitions of an object.

The organization of engine clusters exists for this reason. The operational cluster will
reference an unchanging class library. The test cluster will reference an unchanging beta
class library. Most data acquisition users extending job arguments do not need to include
their class attributes in the object passed by value to the engine. Care needs to be taken
to mark those attributes as transient, both to reduce unnecessary serialization and network
traffic as well as eventual MarshallException problems when adding and deleting
attributes while developing and testing with some engine. The promotion of thin-client
extensions to job elements includes the support of a stand-alone engine for the developer.
Extensions to job elements may be created, modified and tested without restarting the
local engine. Only, when a particular class’ RMI signature of the serialized object has
changed, and a previous version was loaded, will the local engine have to be restarted.

Of course, especially early in development, sometimes a base class is modified due to an
oversight or needed extension. This will manifest itself in any engine that has loaded that

 23

base class and is seeing through RMI the changed class. Restarting that engine is
required to fix the MarshallException.

There are no plans at this time to write a private ClassLoader or reload a ClassLoader.
The disadvantages appear to outweigh the advantages.

Complex Extension of DaqDataItem
The example is based upon the implementation of CompDeviceItem, a computational
device item. The item knows its input devices. The source, disposition, and event are
unimportant since this subclass of DaqDataItem must perform for a variety of job
component specifications but assume the source is AcceleratorSource, the disposition is a
subclass of MonitorChangeDisposition, and the event is repetitive.

This item implements SchedulerState so to be informed of schedulerBegin, receiving a
reference to the DataScheduler which allows it to learn of and remember the disposition
through getDisposition. The disposition must be informed of completion of data
acquisition intercepted by this item.

The key method the DaqDataItem implements is whatDaqs which returns a Vector of
WhatDaq for data acquisition. This method is passed and remembers the implementer of
ReceiveData (typically an interface the disposition has implemented) to push into the
WhatDaq and a DataSchedulerInterface identifying the RMI connection with the client
job to push into each WhatDaq. This method is also passed an initial id to populate and
increment an id tag in the WhatDaq. The disposition expects to see these ids in its
ReceiveData interface, but since this item will intercept ReceiveData, these ids are used
to report completion to the disposition.

This item implements ReceiveData and pushes ‘this’ into each WhatDaq it requires for
input. Likewise, it pushes and increments the id and pushes the scheduler interface. The
Vector of WhatDaq returned includes all the necessary collection elements for the item
but will not include a WhatDaq of the resultant device.

On receipt of raw data in ReceiveData, this item informs the disposition of element
completion by calling the disposition’ s completionCheck passing the WhatDaq id. Next,
the generics method in WhatDaq scales the data. The item implements GenericDAE
which is the engine equivalent of GenericCallback. The item receives readings,
computes a result, unscales the result to raw data, and invokes the remembered
ReceiveData with information about the resultant device. The resultant device, a
WhatDaq created on the fly must populate its genericIndex from this item’ s genericIndex
inherited from DaqDataItem. Ideally, the disposition should not be informed of
completion twice for one item, so one of the ReceiveData invocations should not report
completionCheck, and that id should be used when invoking the remembered
ReceiveData.

 24

Job Component Support for the Job Editor
The components of a data acquisition job are source, disposition, item, and event. Each
of the job components strives to maximize reusability. Many of the job components
subclass other components to add functionality and flexibility. More importantly to this
note is the reusable nature of the job component in a job. A front-end node item for
example may serve as a collection specification for a save file, parameter page, or report
disposition. It may serve as a destination specification for a download or restore
disposition. Likewise, a single plot disposition will provide slow, fast, snapshot, and data
logging plots.

The job editor provides the capability to specify job component creation through
selection and editing of the argument list for each of the component’ s constructors. A
front-end node item has two constructors, one based upon ACNET trunk and node and
one based upon ACNET node name. The job editor supports the selection of the
constructor and the specification of the constructor’ s arguments. The component or the
entire job specification may be saved to an XML file that may be used to instantiate the
job components and start a data acquisition job.

To illustrate the difference between the VMS control system and the job architecture,
consider an alarm’ s bypass control application. In the existing control system, the
application maintains lists of devices to query and control. The lists tend to be private to
the application and limit the application’ s functionality. In the job architecture, the alarm
bypass control application is represented by a job disposition. The collection of devices
may be specified by a data item referring to similar database lists, but might also be
specified by a front-end node item, a save subsystem list id item, or a set of parameter
page data items. Also, changing the job’ s data source to a save file, for example, extends
the disposition’ s functionality. Lastly, the database lists of devices used for frequent
alarm bypass scans are available as a data item to the parameter page or other
dispositions.

Many functional elements of the existing control system may be replicated by defining a
job using the job editor, making the job definition persistent as an XML file, and
providing a command file or link to start the job. Additional functionality is available
through the modification or creation and running a job in the job editor.

The job editor serves several communities.

The job editor serves the programmer by providing access to every job component
constructor and its arguments. A job component may be instantiated with nonsense
argument values, and a job may be tested with illogically grouped job components.

The job editor serves the application builder as generally the application’ s concept is
represented by a job disposition, and the default application behavior is determined
through the specification of other job components.

 25

The job editor serves the application users by providing the ability to create and execute
jobs from components of their choosing.

Job component authors must adhere to some principles to maximize the reusability of
their component and the job editor.

A job component constructor should exist that fully specifies the component, as the job
editor will not provide access to methods that may change the behavior of the component.

A job component constructor argument should provide for temporal consistency. If a
data logger node is required as an argument, specify that argument as a
DataLoggerSource rather than as an ACNET trunk and node, for example as the data
logger and its data may move to another node. Likewise, a constructor should provide
for a relative concept of time, not simply absolute Date objects.

The job component should provide a static constructorArgumentsPicker function when
the errors and inconsistencies may be reduced by such a function. An AcceleratorDevice
constructor includes device name, property, length and offset. The job editor user has the
opportunity to specify many AcceleratorDevice objects that do not represent the
constraints of the device database. For device M:OUTTMP, only a length of 0 or 4, a
property of 1 or 12, and an offset of 0 will result in successful data acquisition. The
constructorArgumentsPicker for AcceleratorDevice would provide the job editor user a
constrained returned argument list.

Internals
The following sections contain a more detailed explanation on a topic.

Engine Startup
The engine startup package is gov.fnal.controls.daq.consolidate. The Monitor object
when instantiated defines engine behavior. An operational clustered engine has the
boolean arguments consolidatedEngines, pingFrontEnds, and multicastPools set to true.
A stand-alone engine instantiates Monitor with each of these arguments set to false.

Consolidated engines indicate that the engines in the cluster are assigned front-end
responsibility and other engines seeking data acquisition from a front-end obtain the data
through request to the responsible engine. The responsible engine pings the front-end for
up status, clock event read capability, and fast time plot protocol support.

The front-end status ping requests a reading from the guaranteed readable device defined
in the ACNET node tables (page D98) at 0.1 Hz and restarted each minute. When a
front-end fails its ping, the front-end node is multicast as down using a state transition
device. The consolidating engine backs off all ACNET message retries except the ping
request and informs outstanding and future requests that the node is down. On ping
success, other ACNET requests are resent. All engines maintain the status of all front-
ends as a service to interested clients and as preparation to server as a backup engine.

 26

The front-ends are pinged for clock event read and fast time plot and snapshot plot
protocol support. An engine begins with these services defined by the ACNET node
table definitions, but changes their status dynamically. When a front-end does not
support these services, the engine supports them with engine software.

Engines ping each other and declare engines down using a state device. Engines ping
engines ahead of them in the ACNET node tables until finding a responding engine.
Intervening engines’ front-end responsibilities are assumed by the pinging engine. Since
engine status is multicast, other engines quickly discover the responsible, backup engine.
When the non-responding engine is back, its state transition announcement causes
requests served by the backup engine to restart.

Engines have input and output files. Their path begins with the engines.files path at the
same level as the gov tree. Directories and subdirectories exist by function. Two sets of
directories exist: engines.files for the operational cluster and engines.files.test for the
development cluster. When a consolidated engine starts up, it reads the file
engines.files.test.startup.TestEngines to determine if its node belongs in the development
cluster.

Engine startup is somewhat complicated. Startup speed is important, and many
initializations must complete, and some are dependent upon each other. Several threads
are started with thread blocking at appropriate points. Startup issues include reading the
ACNET node tables, initializing the ACNET service, cluster determination, Open Access
host and client initialization, finding ping devices including strategies for incorrect or
missing entries, transmitting ACNET killer signals to all front-ends to cleanup any traffic
from a previous run, learning engine consolidation assignments, preparing to listen to
multicast clock events, state transitions, and the multicast data pool, setting up to honor
RMI requests from clients, and starting persistent clients such as data loggers, Open
Access clients and models.

DaqJob Detailed Flow
The following describes in greater detail the flow of the DaqJob obtaining a single
reading of outdoor temperature.

Beginning at job.start(), execution is in the context of the client, and the item is first job
component under scrutiny. The item is directed to establish callbacks.

Remote method callbacks to return the reading must be established before sending the job
components to the server. When acquiring traditional accelerator data, the disposition is
likely to extend MonitorChangeDisposition and implement GenericCallback. In this case
DaqEngineTerminalOutputDisposition does both. In the simplest case, a disposition
extending MonitorChangeDisposition and overriding the reading method is sufficient to
obtain the outdoor temperature reading.

The application programmer is not expected to directly support remote objects. The item
calls GenericEstablishCallback to map the user’ s callback to a remote callback the item

 27

establishes, publishes the remote object, and passes the remote object in the disposition.
The user’ s disposition is required to implement GenericCallback for this type of job, and
the programmer may receive the reading by overriding the reading method. When the
job is composed of several items, or the item contains several devices, it may not be
convenient to receive all the callbacks within the disposition object. When an
AcceleratorDevice implements GenericCallback it overrides an item that implements
GenericCallback that overrides a disposition that implements GenericCallback. In fact, a
job can be composed such that devices, items, and the disposition each receive reading
callbacks.

Before the DaqUser module sends the job components to the server, it ensures the
connection to the server exists. Connections can be reestablished at this point, and jobs
can be refused because of inadequate user privilege. Each of the job components on the
client side is notified that the job is beginning, and the job components are sent to the
server.

The DataAcquisitionSupport module in the package acquire on the server receives the job
components sent via RMI by the client. The server verifies privilege and instantiates a
scheduler suitable for the set of job components or throws an exception. For this job, an
AcceleratorPoolScheduler is created and a DataSchedulerInterface is returned to the
client for canceling the job or receiving job completion notification. The scheduler
informs the job components on the server side that the scheduler is beginning the job.
Every AcceleratorPoolsScheduler has an item that extends DaqDataItem that will return a
vector of WhatDaq that define the devices to collect. The number of devices to collect is
passed to the disposition where the base class DataSource supports counting down
disposition elements to determine job completion. The scheduler inserts each data
acquisition request into the appropriate OneShotDaqPool, processes the pools and waits
for the disposition to tell the scheduler that the job is complete. The pools build
RETDAT frames to send to send via ACNET to the engine consolidator for the front-end
or directly to the front-end. The front-end eventually sends ACNET packets back to the
consolidator who completes a consolidation job by sending an ACNET packet back to the
server who scales the data and processes the RMI callback to the client. The RMI
callback code is in the GenericEstablishCallback calls the mapped user callback. The
scheduler informs the server side job components of scheduler completion, the client side
job of job completion, and the client side informs the job elements of job completion.

A single application may have multiple connections to an engine. On an initial DaqUser
connection from a user node to an engine, the engine looks up, caches, and downloads to
the client a Privilege object. During the life of the DaqUser connection, the engine pings
the client, and if the connection is lost, stops all jobs associated with that user. The client
also pings the engine, and if the connection is lost and regained optionally restarts jobs
dependent upon the DaqJobControl object of each job. The DaqJobControl also provides
interfaces for informing the client of job trouble, statistics, and completion.

 28

DataSource and disposition

AcceleratorSource and AcceleratorDisposition support reading and setting devices
through their front-ends.

BroadcastPoolDisposition is the source of the multicast pool frames. The bandwidth
necessary to share a popular channel has moved from the front-end to the consolidating
engine. The database supports the definition of several broadcast pool ids for each
device. Currently, most of the channel 13 devices have a 1 Hz broadcast pool id defined.
Consolidating engines responsible for the front-end of a broadcast pool device start a
DaqJob to collect the device. The BroadcastPoolDisposition passes the readings on to a
multicast frames for multicasting to all engine nodes.

CallbackDisposition is an abstract class supporting the RMI calls necessary for the
GenericCallback implementation. MonitorChangeDisposition is an example of a
subclass of CallbackDisposition.

CompareSources supports the return of one, the other, both, or the difference of two data
sources supporting the comparison of a save file to real time, two save files, real time and
the database download settings, and many other combinations.

CorrelationDisposition supports the correlation of reading or plot data from multiple
front-ends.

DaqEngineTerminalOutputDisposition utilizes System.out for reporting job output.
Since this disposition implements most callbacks, it is a useful disposition for debugging
and code review.

DataLoggerClientLoggingDisposition supports Open Access Client data logging by
providing simple methods to forward client data repository changes to an associated data
logger.

DataLoggerSource supports jobs collecting data from a data logger.

DataLoggerDisposition is a data logger.

FermiDataDisposition returns data to the user in the form of an object.

JobDataSource uses a DaqJob as a data source supporting jobs containing jobs.

KnobUserSettingSource supports parameter page knobs.

ModelSource and ModelDisposition are used when directing data acquisition from and to
an operational model.

 29

MonitorChangeDisposition is a popular disposition to extend for users implementing
GenericCallback. Supports returns only on changed data or error as well as return all
callbacks.

ObjectCallbackDisposition is used to return an object.

ParameterPageDisposition is the parameter page application.

PlotDisposition is a convenience disposition for users requesting plot callbacks.

SavedDataSource and SavedDataDisposition support save files.

SDAUserViewDisposition extends ParameterPageDisposition with a complex but partial
implementation of TableModel.

SlowPlotDisposition and SnapPlotDisposition are plotters.

TestSource and TestDisposition support reading from and safe setting to front-ends and
Open Access clients under test through redirection.

TreeDisposition displays its result as a Tree.

UserSettingSource is the repository of user setting data.

DataItem

AcceleratorObject, AcceleratorDevice, AcceleratorDevicesItem support name or device
index, property, length, and offset.

AcnetNodeStatusItem identifies the nodes to monitor for ReportCallback status returns.

BeamPositionMonitorScalingItem works with a VAX/VMS process that scales and
returns beam position monitor readings.

BigPingItem is the collection of all front-end ping devices if this engine was
consolidating on behalf of all front-ends, i.e. all operational and test front-ends and Open
Access clients.

ColliderShotItem, E835StoreItem, and PbarTransferShotItem are the input definitions for
their respective Sequenced Data Acquisition collections.

CompDeviceItem supports dynamic devices composed of an expression containing
accelerator devices.

 30

CompoundDaqItem supports a collection of DataItems. For example, several save
subsystem list ids and several AcceleratorDevicesItems containing display list devices.

CompoundDataloggerItem supports the retrieval of data logger data.

CompoundFTPItem supports the retrieval of fast time plot data.

CompoundSnapItem supports the retrieval of snapshot plot data.

CompSetDeviceItem supports settings to dynamic devices composed of an expression of
accelerator devices.

DaqAllItem is the all device for some context. In the context of Save/Restore save it is
the collection of devices for a big save. For a Save/Restore file, it is all the devices in the
file.

DaqEngineDebugTestItem was the early job test module for the engine. Several static
methods demonstrate many varieties of DaqJobs.

DaqJobsItem supports a collection of jobs for a job containing jobs.

DataLoggerListItem the collection of devices by list id within a data logger.

DataLoggerRetrievalItem supports the retrieval of data logger data.

DefaultDaqItem is the default data acquisition item. It is context sensitive. For a
ParameterPageDisposition job, the default item would be the last ParameterPageItem
referenced by that user.

DeviceIndexArrayItem supports an array of device indices.

DeviceNameArrayItem supports an array of device names.

ErrorListItem supports the retrieval of error logging data.

EventDataItem identifies clock and state transition events for a job monitoring events.

FTPDataItem is an abstract class supporting fast time plot requests.

FrontEndNodeItem identifies all the devices addressed by a front-end.

HelloWorld item is a test item that implements OutputTrigger.

ObjectItem is an abstract class that other items identifying objects extend.

OpenAccessClientItem is the FrontEndNodeItem equivalent for Open Access clients.

 31

ParameterPageItem supports the devices on a particular parameter page and sub-page.

PlotDataItem is an abstract class supporting plot callbacks.

ReportItem is the abstract class supporting report requests.

SDADataItem is the abstract class supporting sequenced data acquisition.

SDAReportItem defines a request for SDA save file reports.

SDAUserViewItem contains a collection of devices on a sub-page of the
SDAUserViewDisposition application.

SaveFileReportItem supports the retrieval of directory information about save files.

SaveListIdItem refers to the collection of devices with a specified database save
subsystem list id.

SavedDataAreaTreeItem supports the retrieval of SDA and Save file data.

SnapDataItem supports a snapshot plot request.

TreeItem is an abstract class defining a request for a mutable tree.

WhatDaqVectorItem supports the retrieval of a Vector of WhatDaq objects..

DataEvent

AbsoluteTimeEvent defines an absolute time.

ClockEvent defines a Tevatron clock event.

DataLoggerClientLoggingDataEvent is probably unused.

DefaultDataEvent defines the default event for the context of the job. For example, a
parameter page job uses this event to specify that data collection frequencies should be
the defaults specified in the database.

DeltaTimeEvent defines a time between events. It can define a periodic rate as well as a
T1 – T2 event.

EmptyDataEvent specifies a null event. Event information should be found in another
job element. SDA for example has event information embedded within the item.

 32

KnobSettingEvent defines an event in support of settings where the resources in the client
and server are maintained between settings.

LoggerRetrievalEvent supports data logger retrieval options for skipping points,
specifying a minimum time between points, and date alignment.

MCClockEvent is a multicast clock event supporting clock decoding.

MonitorChangeEvent is an unimplemented description of how monitor change should be
implemented.

MultipleImmediateEvent defines an event that occurs immediately and is considered
repetitive. Used for knobbed settings.

OnceImmediateEvent defines an event that occurs once and immediately.

SavedDataEvent defines a collection of saved data file and collection indices.

StateEvent is a software state transition event.

Data Pools

WhatDaq
The WhatDaq is a key data structure supporting data acquisition. It holds the device
name and index, property, length, offset, frequency, broadcast pool ids, front-end, SSDN,
scaling object, RMI callback, disposition completion id, and a myriad of other job and
data acquisition parameters.

SharedWhatDaq
A SharedWhatDaq contains a user list allowing one SharedWhatDaq to hold references to
many WhatDaq objects. Data acquisition consolidation by device within a pool is the
role of the SharedWhatDaq. Device consolidation is by unique by length, offset, and
frequency.

Adding Pool Requests
The AcceleratorPoolScheduler locates the appropriate pool and inserts an item’ s
WhatDaq requests into the pool. The pool adds a WhatDaq to the user list in a
SharedWhatDaq, creates the SharedWhatDaq when necessary.

Processing a Pool
Pools support user request lists containing SharedWhatDaq objects with user WhatDaq
objects randomly added and deleted. Meanwhile the front-end and pool are working with
an active request list containing SharedWhatDaq objects from the user request list when
the pool was processed causing a new set of network data structures to be shared by the
front-end and pool.

 33

Delivery of Data
The network data structures sent to the front-end return ACNET replies containing data
to the pool. The pool traverses the active request list of SharedWhatDaq objects
delivering data each entry in the SharedWhatDaq user request list to the address specified
in the user WhatDaq.

Front-end Consolidation
When the engine is a member of a consolidating cluster, the ACNET frames are sent to
the RETDAT task in the front-end only when the engine is the consolidating node for that
front-end. Otherwise, the ACNET request with an additional header is send to the task
POOLER on the consolidating engine.

BroadcastDaqPool
The device database may contain broadcast pool ids for each device where each pool id
corresponds to a broadcast data pool updated at a specified frequency. Very few of the
devices in the database have specified broadcast pool ids. The broadcast pool exists
when the system load to multicast device values is considered to be less than transmitting
ACNET replies to each engine requesting a specific device from a consolidator engine.

As each engine starts up or assumes responsibility for another engine, a job is started to
collect data for devices whose front-end consolidator is the local engine at the specified
frequency and multicast the data returns to all engines.

Engines receiving the multicast frames deliver data to the broadcast pool in a similar
manner as the ACNET delivery from a front-end. The broadcast pool contains a user
request list and active request list and operates as a repetitive pool.

The AcceleratorPoolScheduler checks each WhatDaq to determine if collection can be
satisfied through insertion to the broadcast pool. Currently, the return frequencies must
match exactly, i.e. a 0.5 Hz request is not served by a 1.0 Hz broadcast pool.

OneShotDaqPool
The one shot pool manages potentially large FIFO priority ordered queues. Users are
generally not expected to pace or manage resource allocation for large requests. A one
shot read of the Tevatron front-end is a reasonable request even if it results in 25,000
readings. The one shot pool manages first in, first out queues, pacing the length of the
active request list to accommodate the front-end and sending another request only when
the previous has completed.

Any user request added to the tail of a previously large request will wait some time for
the FIFO queue to shrink to the point the user request is fulfilled. Consequently, there are
three priority ordered queues where the lowest priority queue is used for large data items,
such as FrontEndNodeItem and SaveListIdItem. The high priority queue is used for soft
event collection and SDA data items. Otherwise, the normal priority queue is used. On
each return of one-shot data, the next request is from the highest priority queue, and only
one queue is serviced at a time.

 34

The one shot pool also differs from repetitive pools in that it retries collections on some
errors. Errors are categorized as retry-able, resource limiting, or final. Retry-able errors
are retried. Resource-limiting errors initiate retries with a smaller number of requests if
possible.

PoolPacketAssembly
Users are not expected to confine their requests to size limitations of the ACNET
protocol. Pool packet assembly allows users to request up to 32K bytes of data. The data
is collected using linear addressing across multiple ACNET frames, assembled, and
delivered to the user.

RepetitiveDaqPool
The repetitive data pool serves repetitive data acquisition requests. Simple repetitive
request rates such as 1 Hz are satisfied with a multiple reply ACNET request. Requests
for return on clock event are satisfied in the same manner if the front-end supports return
on clock event.

The repetitive pool operates in multi-shot mode when collecting on clock event to a front-
end that does not support the Tevatron clock and for longer periodic rates. Multi-shot
mode involves local timers to fire and initiate a one shot collection.

Only engines serving as the consolidator of a front-end employ multi-shot pools. When
25 engines servicing the same device with a collection rate of 10 minutes, a single one
shot collection from the front-end satisfies all engines since they treat repetitive requests
for front-ends not owned by themselves as simple repetitive. Engines shifting front-end
responsibility as other engines come up or go down must shift some pool behavior from
multi-shot to repetitive and vice versa.

The repetitive pools attempt to maintain front-end data returns by timing out replies,
restarting requests, and toggling the front-end active states. As a front-end enters the
down state, all pool requests except the ping pool (0.1 Hz) return an error and will not
restart until the front-end declares itself or is declared up.

SettingDaqPool
The setting pool is an extension of the one shot pool. Priority is undefined for the setting
pool. Any new setting with a setting on the FIFO queue completes the earlier setting
with a positive error code. This prevents undisciplined knobbers from filling the FIFO
queue to a slow front-end.

Schedulers
All schedulers extend DataScheduler, an abstract class that provides a good deal of
functionality to all schedulers. Schedulers are runnable. The engine starts and runs a
thread of execution on behalf of a job. The job ends when the scheduler thread ends.
Schedulers, in general, do not do much work, but coordinate the job components who do
the work.

 35

The DataScheduler constructor establishes signals for job setup and completion
coordination, publishes itself as a remote object to be returned to the client for future job
cancellation for example, and notifies each of the job elements of scheduler begin.

The run method is implemented in each subclass of DataScheduler and is the existence
justification of the scheduler. When the run method completes its scheduler specific
calls, a call to finish in DataScheduler coordinates blocking the thread until the
disposition is satisfied the job is complete. DataScheduler informs the subclass of
scheduler completion, informs each of the job components of scheduler completion,
informs the client’ s job of scheduler completion, removes this job from the engine’ s job
list, and exits the thread.

AcceleratorPoolScheduler
The AcceleratorPoolScheduler works with data pools that work with the front-ends.

Items are a subclass of DaqDataItem guaranteeing they all return a vector of WhatDaq
and initialize each WhatDaq with a unique, incrementing id for disposition completion,
stuff the reference to the interface handling raw data, and a reference to the scheduler.
The number of expected raw data returns is shared with the disposition, and the
disposition will inform the scheduler of completion on receipt of each unique,
incrementing id. Each WhatDaq is inserted into the appropriate DaqPool. The list of
affected pools is remembered and each pool is notified to process new requests. On a job
cancellation, the remembered pools are asked to remove entries with this scheduler’ s
reference.

ClientPoolScheduler
The ClientPoolScheduler class supports data acquisition for Open Access clients under
test as well as Open Access models and models under test. The VMS OpenAccessClient
architecture uses ACNET as the interface between the front-end server and the client so
front-end servers and clients may run on different nodes.

The Java architecture will never use ACNET as a communication protocol between an
engine and client. The initial implementation has the engine and client sharing an
address space, and threading separates the client from the engine. This will be the best
performing architecture, but will likely be followed with a client to engine RMI
connnection, a CORBA to engine connection, and even perhaps a tcp/ip engine to client
connection.

The initial Java Open Access scheme: An Open Access client and model are considered
operational elements. Typical Open Access clients and models use the DaqSendThread
interface, so the D92 OAS node, OAC node, and database entries in the case of clients
should all point to the same operational engine. Models would have the same OAS and
OAC node but have no database entries. The service id in the SSDN continues to address
which client on that engine owns a particular device.

 36

Open Access clients and models also need to be tested without interfering with
operations. The DataSource for access to operational clients and models are
AcceleratorSource and ModelSource respectively. Test clients and models are not
supported in the operational DAE cluster. Starting a job with a DataSource of
TestSource (models and clients under test) on an operational engine will yield an
exception. Starting a job with a DataSource of TestSource on a non-operational engine
will instantiate (if necessary) that client or model for testing. Several non-operational
engines could have the same client or model under test. Applications will reference the
same client or model data repository when their jobs run on the same engine.

Redirection under VMS whacks ACNET trunk/node and the SSDN. Models whack
additional bytes of the SSDN to carry model specification information (Save/Restore file
number, for example). The Java classes do not propose to connect to models and clients
under test on VMS. The Java side does intend to support VMS application access to Java
clients and models under test (with some modification of D128 and VAXDPM). The
WhatDaq structure will be modified as little as possible. Since engine consolidation
traffic will not occur for clients and models under test, the ACNET trunk/node and SSDN
client class are not required to carry the addressing information.

Operational clients have the addressing information in place in the database. Operational
models are subject to consolidation traffic and will have to force the RETDAT header to
carry information or the WhatDaqs will have to be whacked similar to the incoming VMS
traffic to an operational engine.

The data pools are keyed on trunk, node, and service id. For operational VMS clients and
models as well as DAE operational clients and models, the trunk/node represents the
OAS node and the service id is the SSDN class. Operational clients are included in
consolidation traffic, so the ACNET RETDAT header coupled with the SSDN has to find
its way to the correct data pools. Open access clients are straightforward in that the OAS
trunk/node and the SSDN class will lead to the same pools on the consolidating and
consolidator nodes. Operational models are more difficult. A model on the VMS side
needs to have its SSDN whacked to the model’s OAC class. A Java consolidating
RETDAT message will carry the pseudo trunk and node in its frame to permit the
reconstruction of the service id. A VMS RETDAT request would not have the header, but
would have whacked the SSDN, so one can still find the correct data pool based upon
service id.

Test clients and models will not be consolidated. The reasons include the usual scenario
of testing new code in a stand-alone engine, of not wanting to stop and start a
consolidator, not wanting to instantiate all test clients and models on the consolidating
engine at startup, and the burden of extending the RETDAT header to contain test node
and service configuration. When testing clients and models, data pools may exist for the
operational clients and models, so the test client and model data pools must be keyed
differently by trunk, node, and service id. The data pool key will use the pseudo trunk
and node with a service id of zero.

 37

ConsolidationScheduler
Data acquisition requests are consolidated across the control system to reduce front-end
bandwidth. Consolidating engines not responsible for a front-end forward their ACNET
RETDAT and SETDAT frames with an additional header to the engine responsible for
that front-end.

The ConsolidationScheduler builds and submits a data acquisition job. It packs raw
replies into an ACNET frame when complete sends a reply to the requesting engine.

DataLoggerScheduler
When a job’ s data source is DataLoggerSource, DataLoggerScheduler manages the
retrieval of logged data by passing the PlotDataItem to the DataLoggerSource.

EventScheduler
When a job’ s data item is an EventDataItem, EventScheduler manages the monitoring of
Tevatron clock and state transition events through the EventDataItem itself.

FTPScheduler
When a job’ s data item is an FTPDataItem and the job’ s data source is
AcceleratorSource, FTPScheduler manages the collection of fast time plot data.

The run method acquires a ClassCode object if necessary for each plot request. Each
FTPRequest is inserted into the appropriate FTPPool. The list of affected pools is
remembered and each pool is notified to process new requests. On a job cancellation, the
remembered pools are asked to remove entries with this scheduler’ s reference.

FileScheduler
When a job’ s data item is a TreeItem or the job’ s source is SavedDataSource or
DownloadSource, FileScheduler manages the job.

TreeItem itself manages TreeItem requests.

Collection from a SavedDataSource and DownloadSource is accomplished by inserting
user requests and processing them in a manner similar to data pools since these data
sources implement the DaqPoolUserRequests interface.

JobOutputScheduler
When a job’ s data source is a JobDataSource, JobOutputScheduler manages the job by
building and starting a job with job components extracted from the JobDataSource.

JobScheduler
When a job’ s data item is a DaqJobsItem, JobScheduler manages the job by building and
starting jobs from the job components extracted from the array of JobSpec objects
extracted from the DaqJobsItem.

 38

ObjectScheduler
When a job’ s data item is an ObjectItem, ObjectScheduler manages the job by processing
the request through the ObjectItem itself.

ReportScheduler
When a job’ s data item is a ReportItem, ReportScheduler manages the job starting report
generation through the ReportItem itself.

SequencedScheduler
When a job’ s disposition is a SavedDataDisposition, SequencedScheduler manages the
coordinating job. Operator saves, big saves, and sequenced data acquisition (SDA) use
SDACollection and SDACollectSet objects to define and run data acquisition jobs in a
sequenced order to accomplish the save.

Big save defines an SDACollection that will result in SDACollectSet job for each
operational front-end. The SequencedScheduler coordinates how many front-end
collection jobs are active at a time.

An SDA run defines many SDACollection objects with arming, collection, and ending
events and other rules. The SequencedScheduler monitors the events and initiates
SDACollectSet jobs throughout the run observing the SDACollection rules.

An operator save is a simple SDA with one SDACollection and SDACollectSet with
simple rules resulting in a single OnceImmediateEvent collection.

SettingScheduler
When a job’ s data source is a UserSettingSource and the disposition is
AcceleratorDisposition, SettingScheduler, an extension of FileScheduler manages the
job. Settings’ jobs can be thought of as two jobs. The first job is to extract the settings
from the UserSettingSource and deliver them to the disposition. When the disposition is
AcceleratorDisposition, the second job is to insert the delivered settings into the
appropriate SettingDaqPool and process the pools.

SnapShotScheduler
When a job’ s data item is a SnapShotPlotItem and the job’ s data source is
AcceleratorSource, SnapShotScheduler manages the collection of snapshot plot data.

The run method acquires a ClassCode object if necessary for each plot request. Each
SnapRequest is inserted into the appropriate SnapShotPool. The list of affected pools is
remembered and each pool is notified to process new requests. On a job cancellation, the
remembered pools are asked to remove entries with this scheduler’ s reference.

 39

Open Access Front-end Architecture

Introduction
Open Access Front-ends (OAF) are ACNET front-ends since they supports all of the
ACNET data acquisition protocols. They differ from other front-end architectures in that
they exist in the console and server layers of the control system whereas traditional front-
end operate at the microprocessor layer. Consequently, all the facilities of the top two
layers of the control system are available to the Open Access Front-end and its clients.
Additionally, the Java clients run within a large memory footprint (256 Mbytes or larger),
within high-speed network segments, on processors that are readily upgradeable (and
have been upgraded twice), are developed with modern software engineering tools, and
are deployable to a variety of processors and operating system architectures.

The architecture exists to allow any programmer to support an accelerator device with
access to CLIB, the console library, the relational databases, and without requiring access
and expertise in microprocessor hardware and software.

Features
The architecture defines a default support and behavior for the Open Access Client
(OAC) and its devices. The OAC programmer overloads or tunes behavior to the needs
of the device.

By default, clients and their devices receive the following support. Devices support the
reading, setting, basic status, basic control, analog alarm block, and digital alarm block
properties. The Tevatron clock, fast time plot, snapshot plot, and alarm protocols are
supported. Settings, status, and alarm blocks are downloaded from the device database.
Settings are reflected into readings, basic control is reflected into basic status, and
settings and status are uploaded to the database. Alarms are monitored by repository
observation, then at one Hertz when going bad or going good. Digital alarms support
status of status alarm updates. Fast time plot and snapshot plot rates of 60 Hertz are
supported. Snapshot clock arming triggers, device arming triggers, external arming
triggers, negative arming delays, clock sample triggers, and external sample triggers are
supported. New database entries are downloaded, and up time and guaranteed read and
write devices are supported. Client log files, device redirection and automatic test client
instantiation are supported.

Definition
Open Access Front-end Clients are defined by application page D92,

Getting started
The following steps are required to fully implement a Java Open Access Client or Model.

Use ACNET page D92 to add a client to the database tables. Use the lowest class
number available. Initially, set the OAS and OAC node and the OAS test node to your
local engine.

 40

Modify the MECCA service ACNET_STATUS by adding/modifying an error code in the
file OAFP.TXT based upon the client class for reporting the unavailability of the client.
(mecca/copy acnet_status; edit oafp.txt; mecca acnet_status)

DABBEL a heartbeat device for the client of the form G:OACnnn where nnn is the class
in decimal with leading zeros. The node is the OAS node. The reading SSDN of the
heartbeat device is 00nn/A5A5/A5A5/A5A5 where nn is the class in hexadecimal. Other
devices for this client may be added where the SSDN should be all zeros except for the
low order byte containing the class in hexadecimal. The EMC property is not required
for the support of alarms.

Add this client to the ACNET node tables as a pseudo node.

DABBEL an alarm device for the client of the form J:node where node is the ACNET
pseudo node name. Copy and modify from an existing J:node.

DABBEL a test device of the form Z:node where node is the ACNET pseudo node name.
Copy and modify from an existing J:node, changing the node, description, and SSDN.

Create a project directory under the path j:\gov\fnal\controls\daq\oac\clients where the
directory name is the client name. Reflection is used to find and load the classes for your
client. Copy a trivial OpenAccessClient such as CACHE.JAVA, rename all the instances
of “ cache” to your client name, create a project and add this file, and build the project.

Without adding or modifying any additional code, your client will support all the ACNET
data acquisition protocols. Downloads will populate the devices from the settings’
database, settings will be reflected into readings, control into status, alarms will be
monitored at 1 Hertz, and fast time plot and snapshot will be supported at 15 Hertz or
greater.

Start a local engine. Your client will be instantiated as you begin testing by using the
data source TestSource or redirecting ACNET applications using page D128.

Controlling the service and behavior of the client is available through the client’ s super
class, the OpenAccessClientStub. The client may register as an observer to device
instantiations, readings, settings, downloads, alarms and changes to the client’ s data
repository.

After some development time, the steps required to make the client operational include
setting the OAS node on page D92 to an operational engine, modifying database entries
to point to the OAS node, modifying the ACNET node tables to reflect the operational
change, and modifying the ACNET_STATUS unavailability error code if needed

 41

Getting Involved
At this point, the OAC programmer is supporting devices in the same manner as CACHE,
the OAC whose devices simply reflect settings into readings. To impress a different
behavior on a device, the programmer may intercept readings and settings, control error
returns, deposit values into the repository, specify plot class codes, define external plot
triggers, and a myriad of other controls.

Generally, adding an observer to front-end activities and overloading functionality are the
common means to change the default behavior of the OAC. Subclasses of
ClientDataObserver offer the client opportunity to view access to and interact with client
data during instantiation, read, and write operations. Observer opportunities include:
 AfterReadObserver
 AfterSetObserver
 AfterMinuteReadObserver
 AfterUserSettingObserver
 BeforePostingAlarmObserver
 BeforeReadObserver
 BeforeSetObserver
 BeforeUserSettingObserver
 DataConstructorObserver

AfterDatabaseEditObserver
 PoolCancelObserver
 PoolUpdateObserver
 DaqPoolObserverInterface

Attaching a BeforeReadObserver to the reading property of the heartbeat device supports
the heartbeat reading. Each read operation triggers the observer who calculates up time
and updates the data repository before the repository is read to satisfy a data acquisition
return.

Each client extends OpenAccessClientStub and may overload the stub’ s default
functionality. Though it may not be apparent how each method might be overloaded, the
methods within OpenAccessClientStub include:
 public OpenAccessClientLog clientOpenLogFile()
 public OpenAccessClientLog getClientLogFile()
 public ReportCallback getClientReportTo()
 public void setClientReportTo(ReportCallback reports)
 public void setClientDownloadSource(DataSource source)
 public DataSource getClientDownloadSource()
 public void setClientDownloadDataItem(DataItem item)
 public OpenAccessClientAlarmMonitor getClientAlarmMonitor()
 public int getClientFastTimePlotClassCode(OpenAccessClientData data)
 public int getClientSnapShotPlotClassCode(OpenAccessClientData data)
 public StateTransitionTrigger getStateTransitionTrigger(int armSourceModifier)
 public DataItem getClientDownloadDataItem()

 42

 public void sdaClientLog(WhatDaq device, int error, int offset, byte[] data, Date
armTime, Date sampleTime)
 public boolean isContinuousDownload()
 public void setClientDescription(String description)
 public String getClientDescription()
 public boolean doSettingReflection()
 public void setClientRepository(OpenAccessClientDataRepository repository)
 public OpenAccessClientDataRepository getClientRepository()
 public DataLoggerClientLoggingDisposition getClientLogger()
 public boolean setClientLogger(String name)
 public void clientDownloadComplete(boolean isDatabaseDownload)
 public void clientActivation()
 public void clientTermination()
 public String clientStatistics()
 public static String reportStatistics()
 public final void engineShutdown(String reason)
 public static void setClassBugs(boolean onOff)
 public static boolean isClassBugs()
 public String toString()

Existing OAC functionality
Several clients exist and should be utilized or modified to support devices appropriate to
their charge instead of creating a new client.

BIGSAV and SCHSAV manages shot-setup, time-scheduled and operator initiated big
saves. code

BLMLOG reads Booster beam loss monitor data as a large array device with readings a
milliseconds apart over across several Booster cycle types, decomposes into OAC
devices, and data logs the scalar devices. code

CACHE supports devices in RAM by accepting all the default behavior of an OAC.

CBSHOT, ESTORE, and PBSHOT are SDA companion clients. They receive scaled
data from SDA and trigger client logging to the data loggers CShot, EStor, and PShot
respectively. Each OAC supports 10 devices reflecting its status; these devices are set by
the SequencedScheduler class who uses a device prefix from each OAC to form device
names for the OAC’s current store number (x:FILE), case (x:CASE), case arm time
(x:ARMTIM), set (x:SET), set arm time (x:SETTIM), case disarm time (x:DISTIM), case
end time (x:ENDTIM), snaps complete time (x:SNPTIM), and scalars complete time
(x:DAQTIM). When a sequencer increments the shot or store number, SDA reinitializes
and indicates its readiness by setting x:FILE to the shot or store number; i.e. SDA is
ready when x:FILE == x:STORE. The test OAC auto test device (x:TSTSDA) may be
used to start an automatic SDA run when ON and the test OAC is started or when turned
ON when the test OAC is already running. Time is represented as the number of seconds

 43

since the SDA file was opened. The prefixes for CBSHOT, PBSHOT, and ESTORE are
"C", "A", and "E" respectively.

CONSAR (for CONSolidation ARray) is a general purpose OAC which "consolidates",
or concatenates, the readings from a set of devices into one big
array of data. For each of CONSAR’s devices, CONSAR looks in the database for the
sub-devices whose readings are assembled into the array readout.

CRYTST front-ends a Moore APAC industrial controls system importing channels into
the ACNET control system. Parts of CRYTST utilize a DLL and C++ code requiring a
traversal of the JNI (Java Native Interface) boundary.

CSLDTR is an example of a front-end consolidator.

EVENTS data logs all software state transitions. EVENTS data logs Tevatron clock
events and tracks the time since each event was last seen. This OAC supports devices of
the form G:SNCExx where xx represents a clock event from 00 to FF. The devices are
scaled for readback to represent the number of seconds since the event was last detected.
The integer raw data represents milliseconds since last seen. This OAC also supports
devices of the form G:ExxSCT where xx represents a clock event from 00 to FF. The
integer raw data represents microseconds into the supercycle where the event was seen.
This OAC also supports devices of the form G:ExxNUM where xx represents a clock
event from 00 to FF. The integer raw data represents the count of events in the last
multicast update containing this event. This OAC data logs all G:ExxSCT and every
G:ExxNUM changes from the value one. This OAC also supports devices of the form
G:ExxSUM where xx represents a clock event from 00 to FF. The integer raw data
represents the sum of events in the current supercycle containing this event. This OAC
data logs all G:ExxSUM at each supercycle reset. This OAC also supports the device of
the form G:E00ERR which is a measurement of the timing error as the absolute
difference of time reported by the UCD multicast and the engine’s time of day. This
OAC data logs G:E00ERR at each supercycle reset. Note, most data is stuffed into the
repository by a BeforeRead observer. If alarm blocks are defined for these channels,
code will have to be added to populate the repository periodically for channels with alarm
blocks. code

EXPURT is the replacement for the VMS EXPORT OAC. It exports ACNET data using
database configuration tables and udp.

FRCONS is the cryogenic refrigerator system’ s consolidator.

IIOP is a test OAC demonstrating the use of CORBA(Common Object Request Broker
Architecture).

IPADC front-ends WebDaq100 analog to digital converter modules.

 44

JNITST and JPLOT are development OACs for testing the JNI (Java Native Interface)
and data logging.

LJALRM monitors data loggers and posts alarms on loggers that do not respond to pings.

MACALC (MAth CALCulation) computes readings for its devices from an algebraic
expression involving other ACNET devices and arithmetic and logical
operators. MACALC retrieves the expression for calculating each device from the
database, making it very easy to add devices or change the calculations.
MACALC’s initial task was to replace most of the functionality of the VMS client
APCALC.

MCRVCR manages devices for the MCR Video Server. Supported devices include
G:VDR - when ON, connects to mcrops.fnal.gov; permits recorder control and when
OFF, disconnects from mcrops.fnal.gov; permits no NEW recorder control. The devices
G:VDR1, G:VDR2, G:VDR3, and G:VDR4 - when ON, permits recorder control and
when OFF, permits no NEW recorder control. Control commands come from SDA,
configured as snapshot plot requests where the sample rate is the frame rate. Maximum
number of frames (without creating a new snapshot plot class) is 4096. Testing:
MCRVCR receives its commands for video recording via an ACNET message. That
message is normally composed and sent by a SequencedScheduler when arming a SDA
case. The message includes a Boolean indicating if the SDA collection is operational or
test. Testing involves ensuring this boolean is on, redirecting DAQ and instantiating a
test MCRVCR, redirecting and instantiating a test SDA, firing the test state transition
device for the case and set to collect a G:VDRn device.

MIRROR and MJRROR are identical Open Access Model clients supporting data
acquisition redirection used for testing settings. Settings are reflected into readings.

MONITR reports alarms on monitored services, front-ends, Open Access Front-end
clients, and engines that do not respond to pings. MONITR observes software state
transition events after processing an initialization node status report job to announce
nodes up and down. MONITR supports devices of the form J:node where node is the
ACNET node or pseudo node name.

REMOTE allows remote systems to set ACNET devices by listening to a socket,
receiving udp messages, and setting internal RAM devices. DZero and CDF provide data
to the control system that then may be displayed on parameter pages, data logged, read by
SDA, plotted, and the like.

SCHSAV is the scheduled big save OAC. It starts big saves four times a day.

SETSVR is an incomplete OAC targeted to log control system setting information for
accountability.

TEVMTN manages the Tevatron mountain range display.

 45

TIMEAV (TIME AVeraging) implements calculation of its devices’ readings based on
time averaging another device’s readings over a specified period.
More that just averaging is implemented --- you can also simply sum up the sampled
device’s readings, or take the difference between subsequent averaging
periods. A string specifying the averaging to implement is read from the database,
making it very simple to add new devices and to specify how they are
calculated.

Abstract Client Classes

The OACs named CONSAR, FRCONS, MACALC, and TIMEAV are all built from
abstract client classes. The actual OAC class (e.g. TIMEAV) contains relatively little
Java code. The design is that you can make additional instances of the abstract class with
slightly minor variations, or to support a different set of devices for a different
application.

ACNET

Introduction
ACNET is a connectionless peer-to-peer proprietary Fermilab accelerator binary
networking protocol. Created about 1980, it remains the transport mechanism for data
acquisition and much of the client, server communication. Though looking forward to an
expansion of portable protocols such as RMI and CORBA, the data acquisition engines
use ACNET extensively; the clients do not.

ACNET imposes a small header on an otherwise structure-less message. Message sizes
are small. Request/no-reply, request/single-reply, and request/multiple-reply messaging
is supported on a known socket using udp. A server thread is required to accept
connection requests and direct incoming messages to tasks identified by a DEC Radix-50
name within the header.

Initialization
EngineStartup in the consolidate package initializes ACNET. Information about all
ACNET nodes is read from the database table maintained by application page D98 and
saved in a hash table. Another database table containing ip name for each node is
initialized. An important difference between Java ACNET and other ACNET
implementations is that Java ACNET will use (and requires) name servers to find and
translate ip name to address. ACNET connections are made for threads with task names
BOUNCE and ACNAUX. The former supports bandwidth testing, and the latter
supports statistics returns to applications like page D38.

 46

A socket is created for ACNET reads and writes. An ACNET read thread is created and
maintains a blocking read on the ACNET socket. The read thread processes incoming
messages for dispatching to connected task request and reply queues.

Most engine startups result in AcnetKiller messages sent to all ACNET nodes to cancel
any outstanding multiple reply requests within the outlying node with infrequent replies
that cannot be cleaned up otherwise.

Using ACNET
Once a named AcnetConnection is created, the connection can create AcnetSendRequest
objects, transmit them to other task/node combinations, receive replies, cancel requests,
and perform other operations on the connection. A connection may optionally declare
itself to be an ACNET replier. Requests and replies are delivered within ACNET
managed threads.

The ACNET implementation in Java supports multiple connections, deep resources, long
message sizes, transmission at a message offset, timeouts for first replies and multiple
replies. The implementation does not impose request and reply ids, delivers requests,
replies, unsolicited special messages, and cancels to unique signatures, and all of its
message deliveries are asynchronous.

To make ACNET dumps more readable and useful, the AcnetReply interface forces users
to implement:
 public boolean isRequestValid(AcnetConnection. AcnetSendRequest request)
 public String requestDescription();

The AcnetMessage object support the composition and decomposition of ACNET
messages with get and put operations for most data types.

Connected tasks
ACNAUX supports the retrieval of ACNET statistics, see page D38.
ALARMR is the Open Access Front-end alarm server.
BOUNCE supports ACNET bandwidth testing.
BPMVAX receives scaled BPM values from LBOE on CNS40 for SDA.
BRIDGE supports VMS access to Java data including node status.
BUGS supports ACNET debugging message requests.
CACHEX deposits raw BPM data from SDA to reflection devices in the OAC CACHE
for LBOE to read, scale and transmit to BPMVAX.
ERRSVR receives ACNET error and bandwidth statistics from data acquisition clients.
FSMRPT transmits software state transition device setting requests to FSMSET, the
states front-end.
FTPMAN is the Open Access Front-end connection for plot requests.
FTPPLT supports the fast time plot pool making requests of the front-end FTPMAN task.
KILLER is the ACNET initialization task that sends messages to clean up previous
ACNET traffic.
LJPING sends ping (heartbeat) messages to data loggers.

 47

LJSTAT sends Save/Restore one shot pool statistics client logging messages to the
STATES data logger.
LMBRJK supports data logger retrieval protocol requests.
LOGGET issues data logger retrieval protocol requests.
MCRVCR is an Open Access client supporting video recording requests within
Sequenced Data Acquisition.
PINGER sends ping (heartbeat) requests to POOLER.
POOL sends requests to front-end RETDAT and SETDAT tasks. Each ACNET
connection has one reply thread. Pool connects as multiple users to get
several reply threads. The connected tasks and uses are:

POOLR, repetitive
POOLP, ping
POOL1, one-shot
POOLH, hard event
POOLS, settings
POOLE, soft events
POOLX, other

POOLER supports front-end consolidation requests from other engines.
RETDAT is the Open Access Front-end connection for reading requests.
SETDAT is the Open Access Front-end connection for setting requests.
SEQSCH is a SequencedScheduler for SDA; sends video recording requests to
MCRVCR.
SETSVR receives settings information for accountability logging.
SNAP requests plot class codes from front-ends.
UPLOAD is the Open Access Front-end database setting upload task.

Appendix

History

Impetus

Languages, operating systems, platforms
Object-oriented languages are preferred over the function-oriented languages C and
Fortran. Digital Equipment Corporation’ s VAX/VMS is an obsolete operating system.
The central and console platforms cannot be upgraded beyond the MicroVAX 3100 M90,
a system that is almost 10 years old.

Recruitment and retention
It is difficult to recruit and retain programmers for a shop perceived to be using obsolete
languages, operating systems, and platforms.

Software engineering tools
Modern software engineering tools are not emerging on obsolete operating systems.

 48

Criteria

Reusability
Replacing hundreds of man-years of application software necessitates a great deal of
reuse. Data acquisition redirection has shown, for example, that a parameter page
obviates the need for a Save/Restore display page, and one plot package should serve fast
time plotting, snapshot plotting, and data logger plotting.

Commodity
High volume, inexpensive commodity products, particularly computers, should be
exploited. The console and central system upgrade of ten years ago had a $1.7M budget,
a level of funding difficult to obtain today.

Accessibility
The X-Window technology employed in the present system brought accelerator controls
to the office and the home. Controls’ upgrades should provide easy accessibility for
diagnostics and operation of the accelerator and its systems anywhere on the planet.

Staged deployment

Front-ending old controls
The upgrade will encompass several years and an operating accelerator. New controls
must coexist with old controls sometimes providing dual access to systems and services.

Central Services
Central Services, by definition, do not have a console graphical user interface and
provides targets for a new data acquisition design and implementation.

Core applications
Save/Restore, data logging, plotting, and parameter page applications form a core of
needs that new controls’ data acquisition, storage, and retrieval target.

Maintenance retirement
The ultimate goal of new controls is to retire systems thereby reducing the maintenance
burden. When this upgrade is successfully completed, all VAX/VMS machines will be
gone, all C and Fortran software will be retired, all proprietary protocols having a
portable protocol replacement will be retired, and any custom software with a commodity
or public domain replacement equivalent will be gone.

Selection

Searching
X-Window replacement of CAMAC hardware was a significant element of the 1990
upgrade. Because X-Window programming was difficult and an upgrade goal was to

 49

port most applications without change, a proprietary graphical user interface library with
roots from the 1980 upgrade was ported. A post-upgrade goal was to offer an open X-
Window or MOTIF value added package but was never fulfilled.
In the mid-1990’ s, integrated development environments, software engineering tools and
fourth generational languages seemed to be poised to change the face of controls’
computing. However, tools and vendors appeared and disappeared with alarming
rapidity and most offered very proprietary solutions.
The emergence of Java was accompanied by a reduction in alternatives, and it seemed
that Java would have to succeed or fail before other initiatives could gain momentum.

Engine and Java Links

Summer, 1997
X-Window console in Java

November, 1997
Web Utilization in Controls at Fermilab paper
Web Utilization in Controls at Fermilab presentation
ICALEPCS ‘97
Web Utilization in Controls at Fermilab - division presentation
Beams Division seminar

February 2, 1998
Java Data Acquisition Engine
Empowering Java and Data Acquisition
Proposal to department

July, 1998
BD Software Controls Workshop

July, 1999
Next Generation Accelerator Controls at Fermilab
White paper

January, 2000
Central Tier
Applications Design Review
Division review of controls

April, 2000
Java Services for the Collider Run
Beams Division seminar

 50

Code Example, monitor Tevatron clock events 0x00 and 0x02
and state transition event V:PING
import gov.fnal.controls.daq.datasource.*;
import gov.fnal.controls.data.items.*;
import gov.fnal.controls.daq.events.*;

public class MonitorEvents implements DataEventObserver
{

public MonitorEvents()
{

EventDataItem item = new EventDataItem ();
item.add(new ClockEvent (0), this);
item.add(new ClockEvent (2), this);
item.add(new StateEvent (“V:PING”,

StateEvent.FLAG_ALL_VALUES), this);
item.startObserving(new AcceleratorSource (), 0);

}

 /**
 * A requested event has arrived.
 * @param request original DataEvent request from the observer.
 * @param event reply to original DataEvent request; the DataEvent
 * which just occurred that matched the 'request'.
 */
 public synchronized void update(DataEvent request,

DataEvent reply)
 {
 System.out.println(“Requested event “ + request +

“ has arrived: “ + reply);
 }
}

Explanation
The first 3 lines import packages supporting data acquisition that are needed for the code
that follows.

The next line defines the class and declares that it implements DataEventObserver
interface which is satisfied by the update method.

The next line is the constructor for this class.

The next line creates an EventDataItem, a class that supports the retrieval of Tevatron
clock events and state transition events.

The next lines add Tevatron clock events zero and two as well as the state transition
device “ V:PING” to the EventDataItem, and ‘this’ is the object that has implemented the
DataEventObserver interface.

The next line starts observing events from the accelerator. In this example, that implies
the Tevatron clock and the software state transition devices as opposed to some historical
record of event transitions.

 51

The update method satisfies the DataEventObserver interface and prints the requested
and received event to terminal output.

Alternately, events may be observed by creating and starting a DaqJob.

Code Example, start a BigSave
import gov.fnal.controls.daq.acquire.*;
import gov.fnal.controls.daq.datasource.*;
import gov.fnal.controls.data.items.*;
import gov.fnal.controls.daq.events.*;

(within some class)

DaqUser user = new DaqUser (“BigSaveTry”) ;

DataSource from = new AcceleratorSource();
DataSource to = new SavedDataDisposition (“SaveFile”, 100, false);
DataItem item = new DaqAllItem ();
DataEvent event = new OnceImmediateEvent();
DaqJobControl control = new DaqJobControl();

DaqJob job = new DaqJob(from, to, item, event, user,control);

try
{
 System.out.println(“Starting a BigSave at “ + new Date());

job.start();
job.waitForCompletion();

 System.out.println(“Finished a BigSave at “ + new Date());
}
catch (Exception e)
{

System.out.println(“whoops, job trouble caught: “ + e);
}

Explanation
The first 4 lines import packages supporting data acquisition that are needed for the code
that follows.

The next line establishes a connection with a server engine, in this case the default engine
since it is not specified. The user may be prompted to log in so the engine can determine
the privileges of this user. Most applications need but one DaqUser connection for all the
DaqJob (s) of their application.

The next line specifies the data source is the accelerator, i.e. collect data from the front-
ends in real time.

The next line specifies the disposition to be the save file number 100.

 52

The next line specifies that all devices (as understood by the disposition) should be
collected.

The next line creates a collection frequency object specifying a collection of but once.

The next line creates a default job control object.

The next line creates the job.

The next few lines write a start message, starts the job, waits for the job to complete, and
writes a finished message. Catching and printing the exception to the terminal will
describe a problem with the job.

